为了帮助各位考生对数学有一个更好的掌握和了解,从而制定更加完备详细的备考方案,在此为大家盘点出数学一、二、三的重难点。准备2020考研的童鞋们,要抓紧行动起来了,早起的鸟儿有虫吃,趁着寒假不是很忙,要充分利用起来了。下面小编把高等数学课本数一、数二、数三公共的每一个章节要掌握的重难点单独列出来,这样,同学们就知道考研数学考什么,重难点是啥,有目标就有行动力,现在就拿出课本和笔准备复习喽!
函数、极限、连续
理解函数的概念,掌握函数的表示方法,会建立应用问题的函数关系;了解函数的有界性、单调性、周期性和奇偶性;理解复合函数及分段函数的概念,了解反函数及隐函数的概念;掌握基本初等函数的性质及其图形,了解初等函数的概念;理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系;掌握极限的性质及四则运算法则;掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法;理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限;提醒大家:还要理解函数连续性的概念(含左极限与右极限),会判别函数间断点的类型;了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质,并会应用这些性质。常考题型有:复合函数、极限的概念与性质、无穷小量阶的比较、极限的运算、极限中参数的确定、渐近线的计算、函数的连续性、间断点的类型、有界性的判断。
一元函数微分学
理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系;掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分;了解高阶导数的概念,会求简单函数的高阶导数;会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数;理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,掌握这四个定理的简单应用;会用洛必达法则求极限;掌握函数单调性的判别法,了解函数极值的概念,掌握函数极值、求法及其应用;会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数具有二阶导数,设时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线。会描绘简单函数的图形;常考题型有:导数的定义、导数的计算、切线与法线、单调性及其应用、极值与拐点、函数的讨论、函数与其导函数性质的关系、高阶导数的计算、罗尔定理、拉格朗日中值定理和柯西中值定理。
一元函数积分学
理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法;了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并求它的导数,掌握牛顿--莱布尼兹公式以及定积分的换元积分法和分部积分法;会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值。了解反常积分的概念,会计算反常积分。常考题型有:不定积分的计算、定积分的性质、定积分的计算、反常积分、对变限定积分的讨论、含有积分的方程、定积分的应用、积分恒等式或不等式的证明。
多元函数微积分学
了解多元函数的概念,了解二元函数的几何意义;了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质;了解多元函数偏导数与全微分的概念,会求多元复合函数的一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数。小编提醒大家:还要了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,并会解决简单的应用问题;了解二重积分的概念与基本性质,掌握二重积分的计算方法,了解无解区域上较简单的反常二重积分并会计算;常考题型有:连续、偏导数与全微分;偏导数的计算;极值;二重积分的性质;二重积分的计算。
常微分方程
了解微分方程及其阶、解、通解、初始条件和特解等概念;掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程;理解二阶线性微分方程解的性质及解的结构定理;掌握二阶常系数齐次线性微分方程的解法;会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程;会用微分方程解决一些简单的应用问题。常考题型有:一阶方程的求解、二阶线性微分方程解的性质与结构、二阶线性微分方程求解、含有变限积分的方程、微分方程的应用。
无穷级数(数一、三)
了解级数的收敛与发散、收敛级数的和的概念;了解级数的基本性质及级数收敛的必要条件,掌握几何级数及P级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法;了解任意项级数的收敛与条件收敛的概念以及收敛与收敛的关系,了解交错级数的莱布尼兹判别法;会求幂级数的收敛半径、收敛区间及收敛域;了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数;了解ex,sinx,cosx,ln(1 x)与(1 x)a的麦克劳林展开式。常考题型有:常数项级数的收敛性、幂级数的收敛半径与收敛域、幂级数的展开、幂级数的求和、与微分方程结合。
总算认识考研数学一二三考点盘点 考研复习是勤学思教育网的主要产品,我们的产品负责人是张生,有需要的朋友请直接拨打我的电话13988888888,我们的地址是勤学思教育网,期待与您的合作!